

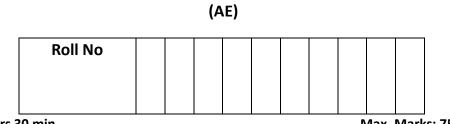
Department of AERONAUTICAL ENGINEERING

AERODYNAMICS

QUESTION BANK

Prepared by:

V.G. Krishna Anand Assistant Professor Department of ANE



MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, February 2021

Aerodynamics

Time: 2 hours 30 min

Max. Marks: 75

Answer Any Five Questions

All Questions carries equal marks.

1	Discuss how do you measure the pressure by using manometers and	[15M]
	mechanical gauges?	
2	Derive the momentum equation in partial differential form.	[15M]
3	Derive the equation for non-lifting flow over circular cylinder and plot the variation of pressure over the cylinder.	[15M]
4	Derive the velocity potential function for source and sink flows.	[15M]
5	Derive an expression for von Karman momentum integral equation, representing the momentum balance across the thickness of the boundary layer.	[15M]
6	Sketch the boundary layer profile over a flat plate and explain all the regions over it.	[15M]
7	Derive the fundamental equation of thin airfoil theory.	[15M]
8	Describe briefly the design philosophies used in conventional high lift airfoil design.	[15M]

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, February 2021

Aerodynamics

(AE)

Roll No					

Time: 2 hours 30 min

Max. Marks: 70

Answer Any Five Questions

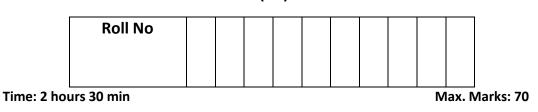
All Questions carries equal marks.

- 1 Derive the continuity equation in both differential with an appropriate fluid flow [14M] model and explain the physical significance of each term in it.
- Explain the variation of pressure distribution over an airfoil with respect to angle of 2 [14M] attack (negative to positive). 3
 - a) Write the governing equations for an incompressible inviscid flow. [4M]
 - b) What are the various elementary flows possible?
 - c) What is Kutta condition? Explain.
- 4 Using Thin airfoil theory, derive the expressions for calculating the aerodynamic center [14M] and Center of pressure for a symmetric airfoil.
- 5 Explain the following:
 - a) Vortex filament
 - b) Helmholtz's vortex theorem
- 6 An aeroplane weighing 100 kN has a span of 19.5 m and a wing-loading of 1.925 kN/m. [14M] The wings are rather sharply tapered having around the centre of span a circulation 10% greater than that for elliptic wings of the same span and lift. Determine the downwash angle one-quarter of the span behind the centre of pressure, which is located at the quarter-chord point. The air speed is 67 m/s. Assume the trailing vorticity to be completely rolled up just behind the wings.
- Explain the working principle and applications of spoilers and air brakes. 7 [14M]

[14M]

8 Explain the working of low speed subsonic wind tunnel (closed circuit) with neat schematic [14M] diagram.

Code No: R18A2107


MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, February 2021

Aerodynamics

(AE)

Answer Any Five Questions

All Questions carries equal marks.

1	Derive the momentum equation in differential form with an appropriate fluid flow model.	[14M]
2	a) Classify the flow regimes based on Mach number.b) Sketch the aerodynamic force and moments on a typical aircraft.c) Define Center of pressure and Aerodynamic Center.	[14M]
3	 Explain the following: a) Magnus Effect b) D'Alembert's Paradox c) Kutta - Joukowsky theorem 	[14M]
4	Derive the potential equation for a lifting flow over a circular cylinder.	[14M]
5	Explain Prandtl's Lifting line theorem and derive the fundamental equation of Prandtl's lifting line theory.	[14M]
6	An aeroplane weighing 73.6 kN has elliptic wings 15.23 m in span. For a speed of 90 m/s in straight and level flight at low altitude find (a) the induced drag; (b) the circulation around sections halfway along the wings.	[14M]
7	What are the different drag reduction methods? Explain.	[14M]

R18

8 Explain the working of low speed subsonic wind tunnel (open circuit) with neat [14M schematic diagram.]

Code No: R17A2104

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, July 2021

Aerodynamics

(AE)

Roll No					

Time: 3 hours

Max. Marks: 70

Answer Any Five Questions

All Questions carries equal marks.

1 (a)	Define Airfoil. Explain the Nomenclature of Airfoil with a neat sketch.	[7M]
1(b)	Explain about different NACA airfoil series	[7M]
2(a)	With the help of pressure distribution diagram explain how lift is generated over an airfoil	[7M]
2(b)	Write about different types of drags that act when a body is in motion.	[7M]
3	Define Source and Sink flow with neat diagrams. Derive the expression of volume flow rate from a line source.	[14M]
4	Consider source of strength ' Λ ' located at the origin. Superimpose on the flow a uniform flow with velocity V $_{\infty}$ moving from left to right. This combination results in flow	[14M]

R17

over a semi-infinite body. a) Find out the coordinates for location of stagnation point. b) What is the equation of streamline passing though the stagnation point?

5	A flat plate of length 0.8 m and width 1.9 m is kept in a sea level air stream flowing at a velocity of 5.3 m/s. Assuming a linear velocity profile for the boundary layer over the plate. Evaluate the boundary layer thickness at the end of the plate and total skin friction drag on the plate.	[14M]
6	Write short notes on (i) Boundary layer thickness ii) Displacement thickness (iii)Momentum thickness	[14M]
7	Derive the fundamental equation of Prandtl's lifting-line theory.	[14M]
8(a)	List the various high-lift devices for aerofoils.	[7M]
8(b)	What are secondary flows? Explain the formation of wing- fuselage trailing vortex.	[7M]

Code No: R18A2107

Time: 3 hours

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, July 2021

Aerodynamics

Answer Any Five Questions

All Questions carries equal marks.

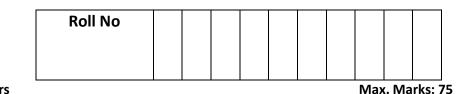
- **1** Derive the energy equation in differential form by applying the first law of **[14M]** thermodynamics to a fluid flow.
- 2 Derive the continuity equation in differential form by using the physical principle [14M] of the conservation of the mass to a finite control volume fixed in space.
- **3** Show that a source flow is a physically possible incompressible flow everywhere **[14M]** except at the origin. Also show that it is irrotational everywhere.
- 4 Explain in detail how combination of uniform flow, doublet flow and vortex flow produces [14M] lifting flow over a cylinder with the help of neat sketches.
- 5 Prove that downwash is constant over the span for an elliptical lift distribution. [14M]
- 6 Derive the fundamental equation of Prandtl's lifting line theory? [14M]

R18

- 7 Describe about the slotted flaps & discuss the effects on the maximum lift coefficient on [14M] some variations of the slot like double slot and triple slot.
- 8 i. Differentiate between Open circuit and Closed-Circuit wind tunnels [14M]
 - Can Computational Fluid Dynamics Tools replace the wind tunnel testing? Justify.

Code No: R15A2104

R15


MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, February 2022

Aerodynamics

(AE)

Time: 3 hours

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question From each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

- 1). a sfine center of pressure and write down the expression for center of pressure. [2M]
 - b splain the difference between the low angle of incidence and high angle of [3M] incidence in the generation of lift of a cambered airfoil.
 - c onsider an airfoil in a flow with a freestream velocity of 150 m/s. The velocity at a given point on the airfoil is 170 m/s. Calculate the pressure coefficient at this point.
 - d stain an expression for velocity potential function for uniform flow. [3M]

e	fferentiate between thermal boundary layer thickness and velocity boundary layer thickness.	[2M]
f	aw the boundary layer profile for the subsonic viscous flow over a flat plate and name it.	[3M]
g	rite Biot-Savart law.	[2M]
h	fferentiate between starting, bound and trailing vortices of wings.	[3M]
i	iefly explain any two high lift configurations used to increase the lift of an airfoil.	[2M]
j	hat are multi-element airfoils? What are the five primary effects in the design of	[3M]
	multi-element airfoils? PART-B (50 MARKS)	
	SECTION-I	
2	Derive energy equation in differential form.	[10M]
	OR	
3	Obtain expressions for aerodynamic forces and moments for a two-dimensional airfoil.	[10M]
	<u>SECTION-II</u>	
4	What is Kutta-Joukowski theorem? Obtain an expression for lift for a lifting flow over a circular cylinder.	[10M]
	OR	
5	Show that the local jump in tangential velocity across the vortex sheet is equal to the local sheet strength.	[10M]
	SECTION-III	
6	Obtain Blasius equation for incompressible inviscid flow over a flat plate at zero angle of attack.	[10M]
	OR	
7	Explain the complete physics of the flow over a flat plate with neat sketches. Write down the factors influencing the boundary layer separation.	[10M]
	SECTION-IV	
8	Derive the fundamental equation of Prandtl's lifting line theory.	[10M]
	OR	
9	Write a short note	[5M]
	a) Induced drag b) Elliptic lift distribution SECTION-V	[5M]

10 Write short notes on

[5M]

a)	Vortex generators and flaps in lift augmentation	[5M]
b)	Drag reduction	
	OR	
11 Write	short notes on	[5M]
a)	Multiple lifting surfaces	[5M]
b)	Effect of Slats and winglets on lift augmentation	

Code No: R17A2	104	R17

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, February 2022

Aerodynamics

(AE)

Roll No					

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks

SECTION-I

- **1(a)** :plain the flow characteristics of symmetrical and unsymmetrical airfoils with a **[7M]** neat schematic of lift–coefficient variation with angle of attack.
- 1(b) sfine lift force, drag force, normal force and axial force acting on an airfoil? [7M] Develop the relation between these force components.

OR

r the NACA 2412 airfoil, the lift coefficient and moment coefficient about the quarter chord at -6° angle of attack are -0.39 and -0.045, respectively. At 4° angle of attack, these coefficients are 0.65 and -0.037, respectively. Calculate the location of aerodynamic center.

SECTION-II

3 srive the fundamental equation of thin aerofoil theory. [14M]

4 Consider a thin flat plate at 5 deg. angle of attack. Calculate the a) lift coefficient b) [14M] moment coefficient about the leading edge, c) moment coefficient about the trailing edge.

SECTION-III

5 Explain Boundary layer separation and methods to control it. [14M]

OR

6 Consider linear velocity profile for the boundary layer over the plate, Develop the [14M] expressions for boundary layer thickness and the variation of wall shear stress with distance along the flat plate

SECTION-IV

- 7(a) Derive the relation for velocity induced at a point by an infinite straight vortex filament [7M] using Biot-Savart law.
- 7(b) Write a short notes on (a) Downwash b) Induced drag c) Induced angle of attack [7M]

OR

- 8(a) Explain the mechanism of formation of trailing vortices at wing tips of finite wings. [7M]
- 8(b) Explain the concept of winglet to reduce induced drag with neat sketch [7M]

SECTION-V

- **9(a)** List the aerofoil design requirements and parameters for generating high co-efficient **[7M]** of lift.
- 9(b) Explain the boundary layer development over any multi surface airfoil. [7M]

OR

10(a) Discuss the methods to control the circulation over the airfoil. [7M]
 10(b) Draw the Schematic of streamlines of flow over wave element crest and trough. Explain [7M] the flow phenomenon.

Code No: R18A2107

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, February 2022

Aerodynamics

(AE)

Roll No					

Time: 3 hours

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1 Obtain the expression for the aerodynamic force and moment coefficients by **[14M]** integrating the pressure and skin friction coefficients over the wing surface.

OR

2 Derive the Navier-Stokes equations by applying the physical principle of [14M] momentum.

SECTION-II

3 Prove that the theoretical result of lift coefficient is directly proportional to the angle **[14M]** of attack.

OR

4 i. Discuss about the Kelvin circulation theorem. [7M]

Max. Marks: 70

ii. Considering the non-lifting flow over a circular cylinder, Derive an expression for [7M] the pressure coefficient at an arbitrary point (r, θ) in this flow, and show that it reduces to Cp =1-4sin² θ on the surface of the cylinder. **SECTION-III** 5 i. Consider a finite wing with an aspect ratio of 6. Assume an elliptical lift [7M] distribution. The lift slope for the airfoil section is 0.1/degree. Calculate and compare the lift slopes for (a) a straight wing, and (b) a swept wing, with a half-chord line sweep of 45 degrees. ii. Use the numerical 5(i), except for a lower aspect ratio of 3. From a comparison of the results from these two problems, draw some conclusions about the effect of [7M] wing sweep on the lift slope, and how the magnitude of this effect is affected by aspect ratio. OR 6 i. Explain how induced drag is produced by a lifting wing. [7M] ii. Based on the lifting line theory show that the downwash is constant over the [7M] span for elliptic lift distribution. **SECTION-IV** 7 i. Summarize the selection criteria of vortex generators. [7M] ii. Outline your views on Large eddy break-up device influence on drag. [7M] OR i. Illustrate the effectives of the retractable leading-edge slat. 8 [7M] ii. Appraise the aerodynamic performance of the Co-flow jet wing. [7M]

SECTION-V

9 Explain the Concept of a Six-Component wind tunnel Balance with illustrations, and give **[14M]** the standards of force measurement.

OR

- 10
- i. How Shadowgraph Technique work, Describe about the Working Principle [7M] of Shadowgraph Techniques.
- ii. How Schlieren Technique work, Describe about the Working Principle of Schlieren Techniques.
 [7M]
